Vibration Sensitivity Reduction of Micromachined Tuning Fork Gyroscopes through Stiffness Match Method with Negative Electrostatic Spring Effect

نویسندگان

  • Yanwei Guan
  • Shiqiao Gao
  • Haipeng Liu
  • Lei Jin
  • Yaping Zhang
چکیده

In this paper, a stiffness match method is proposed to reduce the vibration sensitivity of micromachined tuning fork gyroscopes. Taking advantage of the coordinate transformation method, a theoretical model is established to analyze the anti-phase vibration output caused by the stiffness mismatch due to the fabrication imperfections. The analytical solutions demonstrate that the stiffness mismatch is proportional to the output induced by the external linear vibration from the sense direction in the anti-phase mode frequency. In order to verify the proposed stiffness match method, a tuning fork gyroscope (TFG) with the stiffness match electrodes is designed and implemented using the micromachining technology and the experimental study is carried out. The experimental tests illustrate that the vibration output can be reduced by 73.8% through the stiffness match method than the structure without the stiffness match. Therefore, the proposed stiffness match method is experimentally validated to be applicable to vibration sensitivity reduction in the Micro-Electro-Mechanical-Systems (MEMS) tuning fork gyroscopes without sacrificing the scale factor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Vibration Sensitivity Analysis of a MEMS Tuning Fork Gyroscope with an Anchored Diamond Coupling Mechanism

In this paper, a new micromachined tuning fork gyroscope (TFG) with an anchored diamond coupling mechanism is proposed while the mode ordering and the vibration sensitivity are also investigated. The sense-mode of the proposed TFG was optimized through use of an anchored diamond coupling spring, which enables the in-phase mode frequency to be 108.3% higher than the anti-phase one. The frequenci...

متن کامل

A New Hybrid Gyroscope with Electrostatic Negative Stiffness Tuning

A variety of gyroscopes have been extensively studied due to their capability of precision detection of rotation rates and extensive applications in navigation, guidance and motion control. In this work, a new Hybrid Gyroscope (HG) which combines the traditional Dynamically Tuned Gyroscope (DTG) with silicon micromachined technology is investigated. The HG not only has the potentiality of achie...

متن کامل

Decoupling Control of Micromachined Spinning-Rotor Gyroscope with Electrostatic Suspension

A micromachined gyroscope in which a high-speed spinning rotor is suspended electrostatically in a vacuum cavity usually functions as a dual-axis angular rate sensor. An inherent coupling error between the two sensing axes exists owing to the angular motion of the spinning rotor being controlled by a torque-rebalance loop. In this paper, a decoupling compensation method is proposed and investig...

متن کامل

Reliability of Semmes-Weinstein Monofilaments and Tuning Fork on Pressure and Vibration Sensation Measurements in Diabetic Patients

Objectives: Sensory neuropathy is the major cause of ulceration in diabetic patients. Periodical sensory examination is an appropriate method to detect neuropathy and decrease the risk of diabetic foot ulcer. Semmes–Weinstein Monofilaments (SWM) and tuning fork on/off test are widely used to assess pressure and vibration sensitivity. The present study evaluated the inter- and intra-rater reliab...

متن کامل

On Bandwidth Characteristics of Tuning Fork Micro-Gyroscope with Mechanically Coupled Sense Mode

The bandwidth characteristics of a tuning fork micro-gyroscope with mechanically coupled sense mode were investigated in this paper to provide some references for mechanical bandwidth design. The concept of sense mode mechanical coupling is introduced first. Theoretical frequency response analyses were then carried out on the mechanical part of the gyroscope. Equations representing the relation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016